Strong Γ-ideal convergence in a probabilistic normed space
نویسندگان
چکیده
منابع مشابه
Lacunary Ideal Convergence in Probabilistic Normed Space
Abstract. The aim of this paper is to study the notion of lacunary I-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary I-limit points and lacunary I-cluster points have been defined and the relation between them has been established. Furthermore, lacunary Cauchy and lacunary I-Cauchy sequences are introduced and studied. Finally, we provid...
متن کاملMenger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملOn Ideal Convergence of Double Sequences in Probabilistic Normed Spaces
One of the generalizations of statistical convergence is I-convergence which was introduced by Kostyrko et al. [12]. In this paper, we define and study the concept of I-convergence, I∗-convergence, I-limit points and I-cluster points of double sequences in probabilistic normed space. We discuss the relationship between I2-convergence and I ∗ 2 -convergence, i.e., we show that I ∗ 2 -convergence...
متن کاملStrong $I^K$-Convergence in Probabilistic Metric Spaces
In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.
متن کاملmenger probabilistic normed space is a category topological vector space
in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2016
ISSN: 0166-8641
DOI: 10.1016/j.topol.2015.12.035